Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-$
$\quad \mathrm{ClO}_{4}$
$M_{r}=1045.22$
Monoclinic
$P 2_{1} / c$
$a=16.7610(2) \AA$
$b=14.2287(2) \AA$
$c=21.1305(2) \AA$
$\beta=97.691(1)^{\circ}$
$V=4994.02(10) \AA^{3}$
$Z=4$
$D_{x}=1.390 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=1.23-28.36^{\circ}$
$\mu=0.572 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Slab
$0.38 \times 0.36 \times 0.18 \mathrm{~mm}$
Colourless

Data collection
Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.812, T_{\text {max }}=0.904$
33642 measured reflections
12270 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.111$
$S=1.047$
12270 reflections
641 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0503 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.330 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.357 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{PI}-\mathrm{C} 19$	$1.818(3)$	$\mathrm{P} 2-\mathrm{C} 7$	$1.826(3)$
$\mathrm{PI}-\mathrm{C} 31$	$1.826(3)$	$\mathrm{P} 2-\mathrm{C} 1$	$1.826(3)$
$\mathrm{PI}-\mathrm{C} 25$	$1.829(3)$	$\mathrm{P} 2-\mathrm{C} 13$	$1.834(3)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{P} 1$	$120.04(5)$	$\mathrm{Pl}-\mathrm{Ag} 1-\mathrm{P} 2$	$122.99(2)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{P} 2$	$111.87(5)$	$\mathrm{Pl}-\mathrm{AgI}-\mathrm{N} 4$	$119.39(5)$

Table 2. Hydrogen-bonding geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \ldots A$	$D — \mathrm{H} \cdots A$
C48-H48A \cdots O4A	0.93	2.47	$3.36(1)$	160
C49—H49A \cdots O4A"	0.93	2.56	$3.37(1)$	146
Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.				

The perchlorate ion is highly disordered. The $\mathrm{O} 2, \mathrm{O} 3$ and O4 atoms were refined with 60 and 40% occupancies for the two conformers, while the Ol atom was refined with full occupancy.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

Diamminebis(2,4,6-trichlorophenolato)copper(II)

Gülsün Gökağaç, ${ }^{a}$ Leyla Tatar, ${ }^{b}$ Duygu Kisakürek ${ }^{a}$ and Dinçer Ülküu ${ }^{b}$
${ }^{a}$ Middle East Technical University, Department of Chemistry, 06531 Ankara, Turkey, and ${ }^{b}$ Hacettepe University,
Department of Engineering Physics, Beytepe 06532, Ankara, Turkey. E-mail: ggulsun@metu.edu.tr

(Received 4 January 1999; accepted 6 May 1999)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2}-\right.\right.$ $\left.\mathrm{Cl}_{3} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}$], has been determined by X-ray diffraction. The title monomeric centrosymmetric $\mathrm{Cu}^{\mathrm{II}}$ complex

crystallizes in the monoclinic system. The $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ coordination sphere is trans-planar $[\mathrm{Cu}-\mathrm{Ol}=1.946$ (2) and $\mathrm{Cu}-\mathrm{N} 1=1.984(2) \AA$], with the fifth and sixth coordination sites blocked by Cl atoms from the phenoxide ions $[\mathrm{Cu}-\mathrm{Cl} 1=2.982$ (1) \AA] to form a tetragonally elongated octahedral structure for $\mathrm{CuO}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ coordination. Intermolecular hydrogen bonds hold the complex molecules together in a one-dimensional chain.

Comment

$\mathrm{Cu} L_{2}(\mathrm{THP})_{2}$-type complexes (where THP is $2,4,6$ trihalophenol and L is pyridine, tetramethylethylenediamine, $2,2^{\prime}$-dipyridyl or ammonia) are important starting materials for the preparation of poly(dihalophenylene oxide) polymers (Harrod, 1969; Baştürkmen et al., 1993). It is believed that the structure of the complex and the kind of ligand in these $\mathrm{Cu}^{\mathrm{Il}}$ complexes have significant effects on polymerization. This is currently under investigation (Kısakürek, 1996). Although some of the X-ray crystal structures of Cu^{11} complexes with phenolate ligands, such as bis(2,4,6-trichlorophenolato)($N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine)copper(II), bis(4-formyl-2-methoxyphenolato)bis(pyridine)copper(II) hydrate and bis(2-methoxy-4-nitrophenolato)bis(pyridine) copper(II) (Bullock et al., 1974), have been studied previously, no work has been performed on the simple diamminebis(2,4,6-trichlorophenolato)copper(II) complex, (I). In this work, the crystal structure of (I) has been determined. The polymerization with this complex is currently under investigation.

(I)

It was found that the $\mathrm{Cu}^{\text {II }}$ complex has a tetragonally elongated octahedral structure, with bond angles of $90.66(9)$ and $179.99(1)^{\circ}$ for $\mathrm{N} 1-\mathrm{Cu}-\mathrm{Ol}$ and $\mathrm{Cl} 1-$ $\mathrm{Cu}-\mathrm{Cll}{ }^{\mathrm{i}}$, respectively [symmetry code (i): $-x,-y$, $-z$] (Fig. 1). The $\mathrm{Cu}-\mathrm{N} 1$ bond length [1.984 (2) Å] is slightly longer than the $\mathrm{Cu}-\mathrm{Ol}$ bond length [1.946 (2) \AA] in the coordination plane. The $\mathrm{Cu}-\mathrm{O}$ distance is very close to that in bis(4-formyl-2-methoxyphenolato)bis(pyridine)copper(II) hydrate [1.939 (4) \AA], while the $\mathrm{Cu}-\mathrm{N}$ bond length is slightly shorter than that for a similar complex [2.061 (7) \AA; Hobson et al., 1973]. This might be due to the smaller size and more basic character of ammonia compared with pyridine. The $\mathrm{Cu}-\mathrm{Cl} 1$ distance $[2.982(1) \AA]$ is close to the average value of the $\mathrm{Cu}-\mathrm{Cl}$ distances found in other complexes
where the Cl atom is coordinated to copper in the axial position as in the title complex (Ladd \& Perrins, 1980; Marengo-Rullan \& Willett, 1986). The dihedral angle between the coordination plane around copper ($\mathrm{N} 1, \mathrm{Ol}$, Nl^{i} and Ol^{i}) and the trichlorophenol plane ($\mathrm{Cl}-\mathrm{C} 6$) is $81.7(1)^{\circ}$. The $\mathrm{C}-\mathrm{C}$ bond lengths in the trichlorophenol ligand range between 1.374 (4) and 1.409 (4) \AA. These values are between a $\mathrm{C}-\mathrm{C}$ single-bond length of about $1.530 \AA$ and a $\mathrm{C}=\mathrm{C}$ double-bond length of about 1.312 \AA (Tahir et al., 1997). This indicates delocalization of the double bonds ($\mathrm{Csp}{ }^{2}-\mathrm{C} s p^{2}$) within the trichlorophenol ring.

Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles with arbitrary radii.

Intermolecular hydrogen bonds hold the complex molecules together in a one-dimensional chain (Fig. 2). The hydrogen bonds are formed between H atoms of ammonia and the chlorine of one $2,4,6$ trichlorophenol ligand and the oxygen of the second $2,4,6$-trichlorophenol ligand, which are in trans positions, i.e.

Fig. 2. PLATON (Spek, 1990) drawing illustrating the hydrogen bonding.
$\mathrm{H} 11 \cdots \mathrm{Cl} 1(1-x,-y,-z)$ and $\mathrm{H} 13 \cdots \mathrm{Ol}(1+x, y, z)$. Hydrogen bonds were calculated with PLATON (Spek, 1990) and details are given in Table 3.

Experimental

An aqueous solution (42 ml) of sodium 2,4,6-trichlorophenolate ($0.805 \mathrm{~g}, 0.00408 \mathrm{~mol}$), which was prepared by adding excess concentrated $\mathrm{NaOH}(0.428 \mathrm{~g}, 0.01205 \mathrm{~mol})$ to 2,4,6-trichlorophenol in water, was added dropwise to a concentrated aqueous solution (10 ml) of $\mathrm{CuSO}_{4}(0.325 \mathrm{~g}$, 0.00204 mol) with stirring. Immediate formation of a darkbrown precipitate was observed. This dark-brown precipitate turned light blue after addition of the sodium 2,4,6-trichlorophenolate solution was complete. Concentrated ammonia ($0.1338 \mathrm{~mol}, 10 \mathrm{ml}$) solution was added to this mixture until the light-blue precipitate dissolved to give a clear dark-blue solution. Upon leaving this solution on the bench for several days, dark-brown crystals were formed. These crystals were collected, washed with a small amount of cold water and dried in a vacuum overnight and used for X -ray data collection. Elemental analysis found for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{6} \mathrm{CuN}_{2} \mathrm{O}_{2}$: C 29.50, H 2.16 , N 5.68\%; calculated: C 29.39, H 2.06, N 5.71\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
$M_{r}=490.48$
Monoclinic
$P 2_{1} / n$
$a=4.7711$ (7) \AA
$b=12.4592(10) \AA$
$c=14.9907(13) \AA$
$\beta=94.37(1)^{\circ}$
$V=888.5(2) \AA^{3}$
$Z=2$
$D_{x}=1.833 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(Fair, 1990)
$T_{\min }=0.690, T_{\max }=0.724$
1965 measured reflections

Refinement

Refinement on F
$R=0.031$
$w R=0.038$
$S=1.00$
1448 reflections
106 parameters
H atoms: see below
$w=1 /\left[\sigma(F)^{2}+(0.02 F)^{2}\right.$
$+0.35]$, except $w=0$
if $F^{2}<\sigma F^{2}$

1448 reflections with
$I>\sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=26.17^{\circ}$
$h=-5 \rightarrow 0$
$k=-15 \rightarrow 0$
$l=-18 \rightarrow 18$
3 standard reflections frequency: 120 min intensity decay: 0.107%
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.55-18.33^{\circ}$
$\mu=2.15 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.40 \times 0.15 \times 0.15 \mathrm{~mm}$
Dark brown

$$
0+2+2
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.454 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.496 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=$	$(1 / 3) \sum_{i} \sum_{j} U^{j} a^{\prime} a^{\prime} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.		
x	y	z	$U_{\text {eq }}$
0	0	0	$0.0328(1)$
$0.2293(2)$	$-0.18966(6)$	$0.10262(5)$	$0.0476(2)$
$0.3972(3)$	$-0.13174(8)$	$0.45771(6)$	$0.0755(3)$
$-0.3286(2)$	$0.123(0)(7)$	$0.26487(6)$	$0.0548(3)$
$-0.1777(4)$	$-0.0084(2)$	$0.1124(1)$	$0.0417(5)$
$0.2926(5)$	$0.0977(2)$	$0.0551(2)$	$0.0422(6)$
$-0.0439(6)$	$-0.0355(2)$	$0.1888(2)$	$0.0360(6)$
$0.1563(6)$	$-0.1186(2)$	$0.1982(2)$	$0.0390(6)$
$0.2929(7)$	$-0.1480(3)$	$0.2787(2)$	$0.0444(10)$
$0.2315(7)$	$-0.0938(3)$	$0.3546(2)$	$0.0483(10)$
$0.0393(7)$	$-0.0115(3)$	$0.3514(2)$	$0.047(10)$
$-0.0922(6)$	$0.0167(2)$	$0.2692(2)$	$0.0403(8)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{OJ}$	1.946 (2)	$\mathrm{Cl} 2-\mathrm{C} 4$	1.747 (3)
$\mathrm{Cu}-\mathrm{N} 1$	1.984 (2)	$\mathrm{Cl} 3-\mathrm{C} 6$	1.738 (3)
$\mathrm{Cu}-\mathrm{Cl}$	2.982 (1)	$\mathrm{OI}-\mathrm{Cl}$	1.312 (3)
$\mathrm{ClI}-\mathrm{C} 2$	1.742 (3)		
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 1$	90.66 (9)	$\mathrm{ClI}-\mathrm{C} 2-\mathrm{C} 3$	118.4(2)
$\mathrm{Cl}-\mathrm{Cu}-\mathrm{ClI}$	179.99 (1)	$\mathrm{Cl} 2-\mathrm{C} 4-\mathrm{C} 3$	119.2 (2)
$\mathrm{Cu}-\mathrm{Ol}-\mathrm{Cl}$	123.7 (2)	$\mathrm{Cl} 2-\mathrm{C} 4-\mathrm{C} 5$	119.3 (2)
$\mathrm{O1}-\mathrm{Cl}-\mathrm{C} 2$	123.9 (3)	$\mathrm{Cl} 3-\mathrm{C} 6-\mathrm{Cl}$	118.0(2)
$\mathrm{OH}-\mathrm{Cl}-\mathrm{C} 6$	122.9)(3)	$\mathrm{Cl} 3-\mathrm{C}-\mathrm{C} 5$	118.4 (2)
$\mathrm{Cll}-\mathrm{C} 2-\mathrm{Cl}$	117.9 (2)		

Symmetry code: (i) $-x,-y,-z$.
Table 3. Hydrogen-bonding geometry $\left({ }_{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{NI}-\mathrm{HI} .3 \cdots \mathrm{Ol}^{1}$	0.87	2.12	$2.923(3)$	154
$\mathrm{NI}-\mathrm{H} 11 \cdots \mathrm{Cl}^{\prime \prime}$	0.86	2.79	$3.596(3)$	155

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x,-y,-z$.
Ring H atoms were placed geometrically $0.95 \AA$ from their parent atoms, while the H atoms of ammonia were taken from a difference map. A riding model was used for all H atoms, with $U(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection and cell parameters: CAD-4 EXPRESS Software (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey. The authors also acknowledge Özlem Saraçoğlu for her help during single-crystal preparation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1268). Services for accessing these data are described at the back of the journal.

References

Başürkmen, M., İ̧̧̧̧i, H. \& Kısakürek, D. (1993). Polym. Int. 30, 387-392.
Bullock, J. I., Hobson. R. J. \& Povey, D. C. (1974). J. Chem. Soc. Dalton Trans. pp. 2037-2043, and references therein.
Enraf-Nonius (1993). CAD-4 EXPRESS Software. Version 1.1. EnrafNonius, Delft. The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harrod, J. F. (1969). Can. J. Chem. 47, 637-645.
Hobson, R. J., Ladd, M. F. C. \& Povey, D. C. (1973). J. Cryst. Mol. Struct. 3, 377-388.
Kısakürek, D. (1996). The Polymeric Material Encyclopedia, Vol. 8, pp. 5731-5737. New York: CRC Press.
Ladd. M. F. C. \& Perrins, D. H. G. (1980). Acta Cryst. B36, 22602266.

Marengo-Rullan, J. R. \& Willett, R. D. (1986). Acta Cryst. C42, 14871489.

Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tahir, M. N., Ülkü, D., Demir, A. S., Mohammadi, M. \& Özgül, E. (1997). Acta Cryst. C53, 496-498.

Acta Cryst. (1999). C55, 1416-1418

\{[$\mu-N, N^{\prime}$-Bis(salicylidene)-1,3-propanediaminato]copper(II) $\}$ dichloromercury(II) \dagger

Orhan Atakol, ${ }^{a}$ Cengiz Arici, ${ }^{b}$ M. Nawaz Tahir, ${ }^{b}$ Adnan Kenar ${ }^{a}$ and Dinçer Ülkü ${ }^{b}$
${ }^{a}$ Department of Chemistry, Ankara University, Tandogan 06532, Ankara, Turkey, and ${ }^{b}$ Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey.E-mail: arici@lidya.cc.hun.edu.tr

(Received 26 March 1999; accepted 20 May 1999)

Abstract

The title compound, $\left[\mathrm{CuHgCl} 2\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, is a hetero-dinuclear complex containing $\mathrm{Cu}^{1 \mathrm{I}}$ and $\mathrm{Hg}^{I I}$ ions. The $\mathrm{Cu}^{\text {II }}$ centre has a distorted square-planar coordination involving two O and two N atoms from the imine-phenol ligand, with $\mathrm{Cu}-\mathrm{O}$ distances of 1.920 (3) and 1.926 (2) \AA, and $\mathrm{Cu}-\mathrm{N}$ distances of 1.966 (3) and 1.986 (4) \AA. The coordination around the Hg^{11} centre consists of two chloride ions at distances of 2.343 (1) and 2.325 (2) \AA, and two phenolic O atoms of the organic ligand at distances of 2.516 (2) and 2.421 (3) \AA. The $\mathrm{Cu} \cdots \mathrm{Hg}$ separation is 3.5301 (8) \AA.

Comment

It has been known since 1926 that mercury is toxic to humans and animals (Greenwood \& Earnshaw, 1994). Mercury compounds have interesting crystal lattice structures (Grdenic, 1965; Cotton \& Wilkinson, 1967; Holy et al., 1976) and mercury halides tend to dimerize forming planar $\mathrm{Hg} X \cdots \mathrm{Hg}$ coordination rings. Mercury

[^0]compounds are therefore very interesting from both toxicological and crystallographic points of view.

The title compound, (I), comprises a novel $\mathrm{Cu}-$ Hg hetero-dinuclear complex. The [N, N^{\prime}-bis(salicyl-idene)-1,3-propanediaminato]copper(II) complex forms different polynuclear complexes with metal salts in nonaqueous media via its phenolic O atoms (Fukuhara et al., 1990), and these complexes may be di-, tri- or tetranuclear.

(I)

As described in the Experimental section, the first step in the synthesis of (I) was the preparation of the [N, N^{\prime}-bis(salicylidene)-1,3-propanediaminato]copper(II) complex, (II) (Drew et al., 1985). When this complex was reacted with HgCl_{2} in dry dioxane, the overall coordination of copper was unaltered, but the bond lengths and angles differ between the mononuclear (Drew et al., 1985) and the present dinuclear complexes. The $\mathrm{Cu}^{\mathrm{II}}$ centre has a distorted square-planar coordination involving two O and two N atoms from the imine-phenol ligand, with $\mathrm{Cu}-\mathrm{O}$ distances of 1.920 (3) and 1.926 (2) \AA, and $\mathrm{Cu}-\mathrm{N}$ distances of $1.966(3)$ and $1.986(4) \AA$.

The most significant geometric changes were observed in the coordination around the $\mathrm{Hg}^{\mathrm{II}}$ centre. Solid HgCl_{2} was found to be linear, with $\mathrm{Hg}-\mathrm{Cl}$ and $\mathrm{Hg} \ldots \mathrm{Cl}$ (neighbour) distances of 2.25 and $3.34 \AA$, respectively (Greenwood \& Earnshaw, 1994), but the Cl -$\mathrm{Hg}-\mathrm{Cl}$ angle in (I) is not linear and the $\mathrm{Hg}-\mathrm{Cl}$ distances are $2.325(2)$ and 2.343 (1) \AA. In (I), the $\mathrm{Hg}^{\text {II }}$ centre is further coordinated by two phenolic O atoms at distances of 2.516 (2) and 2.421 (3) \AA, making its coordination number 4. The $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl} 2$ and $\mathrm{Ol}-\mathrm{Hg}-$ O 2 angles are 154.44 (5) and $61.25(9)^{\circ}$, respectively. The $\mathrm{Cu} \cdots \mathrm{Hg}$ separation is 3.5301 (8) \AA. This coordination can be considered as an excessively deformed tetrahedral structure.

Although mercury(II) has been reported as having coordination numbers $2,3,4,5,7$ and 8 , the most frequently observed of these are 2 and 4. It was reported that the coordination in the symmetric $\left[\mathrm{HgI}_{4}\right]^{2-}$ complex (Greenwood \& Earnshaw, 1994) was perfectly tetrahedral, with Hg -I bond lengths of $2.78 \AA$. However, in the solid-state structure of $\mathrm{Hg}(\mathrm{CN})_{2}$ (Cotton \& Wilkinson, 1967), the Hg^{11} centre was reported to have four-coordination, with $\mathrm{NC}-\mathrm{Hg}-\mathrm{CN}$ and $\mathrm{CN} \cdots \mathrm{Hg} \cdots \mathrm{NC}$ angles of 171 and 80°, respectively. The coordination in solid $\mathrm{Hg}(\mathrm{CN})_{2}$ is therefore very similar to the coordination of the present complex.

[^0]: \dagger Systematic name: dichloro- $2 \kappa^{2} \mathrm{Cl}-\mu-\left\{2,2^{\prime}-[1,3\right.$-propanediylbis(nitrilomethylidyne)]diphenolato $\}-1 \kappa^{4} O, N, N^{\prime}, O^{\prime}: 2 \kappa^{2} O, O^{\prime}-\operatorname{copper}($ II $)$ mercury(II).

